Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(24): e115030, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37984335

RESUMO

Agonist binding in ligand-gated ion channels is coupled to structural rearrangements around the binding site, followed by the opening of the channel pore. In this process, agonist efficacy describes the equilibrium between open and closed conformations in a fully ligand-bound state. Calcium-activated chloride channels in the TMEM16 family are important sensors of intracellular calcium signals and are targets for pharmacological modulators, yet a mechanistic understanding of agonist efficacy has remained elusive. Using a combination of cryo-electron microscopy, electrophysiology, and autocorrelation analysis, we now show that agonist efficacy in the ligand-gated channel TMEM16A is dictated by the conformation of the pore-lining helix α6 around the Ca2+ -binding site. The closure of the binding site, which involves the formation of a π-helix below a hinge region in α6, appears to be coupled to the opening of the inner pore gate, thereby governing the channel's open probability and conductance. Our results provide a mechanism for agonist binding and efficacy and a structural basis for the design of potentiators and partial agonists in the TMEM16 family.


Assuntos
Canais de Cloreto , Ativação do Canal Iônico , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Anoctamina-1/genética , Anoctamina-1/química , Anoctamina-1/metabolismo , Ligantes , Microscopia Crioeletrônica , Sítios de Ligação , Cálcio/metabolismo
2.
Elife ; 72018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30311910

RESUMO

TMEM16A is a ligand-gated anion channel that is activated by intracellular Ca2+. This channel comprises two independent pores and closely apposed Ca2+ binding sites that are contained within each subunit of a homodimeric protein. Previously we characterized the influence of positively charged pore-lining residues on anion conduction (Paulino et al., 2017a). Here, we demonstrate the electrostatic control of permeation by the bound calcium ions in mouse TMEM16A using electrophysiology and Poisson-Boltzmann calculations. The currents of constitutively active mutants lose their outward rectification as a function of Ca2+ concentration due to the alleviation of energy barriers for anion conduction. This phenomenon originates from Coulombic interactions between the bound Ca2+ and permeating anions and thus demonstrates that an electrostatic gate imposed by the vacant binding site present in the sterically open pore, is released by Ca2+ binding to enable an otherwise sub-conductive pore to conduct with full capacity.


Assuntos
Anoctamina-1/genética , Cálcio/metabolismo , Proteínas Mutantes/genética , Conformação Proteica , Animais , Ânions/química , Anoctamina-1/química , Sítios de Ligação , Cálcio/química , Agonistas dos Canais de Cálcio , Células HEK293 , Humanos , Ativação do Canal Iônico/genética , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Eletricidade Estática
3.
Elife ; 62017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561733

RESUMO

The calcium-activated chloride channel TMEM16A is a member of a conserved protein family that comprises ion channels and lipid scramblases. Although the structure of the scramblase nhTMEM16 has defined the architecture of the family, it was unknown how a channel has adapted to cope with its distinct functional properties. Here we have addressed this question by the structure determination of mouse TMEM16A by cryo-electron microscopy and a complementary functional characterization. The protein shows a similar organization to nhTMEM16, except for changes at the site of catalysis. There, the conformation of transmembrane helices constituting a membrane-spanning furrow that provides a path for lipids in scramblases has changed to form an enclosed aqueous pore that is largely shielded from the membrane. Our study thus reveals the structural basis of anion conduction in a TMEM16 channel and it defines the foundation for the diverse functional behavior in the TMEM16 family.


Assuntos
Ânions/metabolismo , Anoctamina-1/metabolismo , Anoctamina-1/ultraestrutura , Animais , Microscopia Crioeletrônica , Camundongos , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...